Sigel, H. (1980). Inorg. Chem. 19, 1411-1413.
Sinn, E. \& Harris, C. M. (1969). Coord. Chem. Rev. 4, 391-422.
Taylor, L. T. \& Coleman, W. M. (1982). Inorg. Chim. Acta, 63, 183-187.

Villafranca, J. J. (1981). Copper Proteins, edited by T. G. Spiro, pp. 263-289. New York: John Wiley.
Wagner, M. R. \& Walker, F. A. (1983). Inorg. Chem. 22, 3021-3028.

Acta Cryst. (1989). C45, 11-13

Tetraphenylarsonium Tetracyanoaurate(III) Dichloromethane Solvate

By Peter G. Jones* and Carsten Thöne*
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

(Received 22 April 1988; accepted 8 August 1988)

Abstract

As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]\left[\mathrm{Au}(\mathrm{CN})_{4}\right] . \mathrm{CH}_{2} \mathrm{Cl}_{2}, M_{r}=769 \cdot 3\), orthorhombic, $P b c m, a=9.205$ (2), $b=13.776$ (2), $c=23.213(3) \AA, \quad V=2943.6 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.74 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=6.3 \mathrm{~mm}^{-1}$, $F(000)=1480, T=293 \mathrm{~K}, R=0.042$ for 2043 unique observed reflections. The Au atom occupies the special position $\frac{1}{2}, \frac{1}{2}, 0$ with crystallographic symmetry $\overline{1}$, but the actual symmetry of the anion is close to the ideal $4 / \mathrm{mmm}$. The As atom lies in the mirror plane $x, y, \frac{1}{4}$. The solvent molecule is ordered, its central C atom lying on the twofold axis $x, \frac{3}{4}, \frac{1}{2}$. The extended structure consists of two kinds of layers, one composed of cations and the other of anions and solvent. The $\mathrm{Au}-\mathrm{C}$ bond lengths, 1.999 (7) and 2.014 (7) \AA, are appreciably longer than in $\mathrm{Au}(\mathrm{CN})_{2}^{-}$complexes with large cations.

Introduction. We have recently reported the synthesis and structure of $\mathrm{Ph}_{4} \mathrm{As}^{+} . \mathrm{Au}(\mathrm{SeCN})_{4}^{-}$(Jones \& Thöne, 1987); the compound had already been reported by Schmidtke \& Garthoff (1967). The reaction between this compound and $\mathrm{Ph}_{3} \mathrm{As}$ gave a colourless solution, from which the title compound could be isolated as a white powder. Presumably the reaction also leads to the formation of $\mathrm{Ph}_{3} \mathrm{AsSe}$, but we have not proved this. One of us (Jones, 1976) has already reported the synthesis of the title compound by other methods.

Experimental. The title compound was recrystallized by liquid diffusion of diisopropyl ether into a dichloromethane solution. Colourless prisms were obtained, which gradually became opaque on exposure to air. This loss of solvent is, however, slow enough to permit the crystals to be mounted in glass capillaries without special precautions.

[^0]A crystal $0.6 \times 0.15 \times 0.15 \mathrm{~mm}$ was used to collect 6752 profile-fitted intensities (Clegg, 1981) on a Stoe-Siemens four-circle diffractometer; $\omega / 2 \theta$ scans; monochromated Mo $K \alpha$ radiation, $2 \theta_{\text {max }}=50^{\circ}$, octants $+h+k+l$ and $-h-k-l$ and some additional equivalents. Merging equivalents gave 2643 unique reflections ($R_{\text {int }}=0.025$, index ranges $h 0$ to $10, k 0$ to 16, $l 0$ to 27), of which 2043 with $F>4 \sigma(F)$ were used for all calculations. The program system was SHELX76 (Sheldrick, 1976), locally modified by its author. An absorption correction based on ψ scans was applied; transmission factors $0.78-0.92$. Three check reflections decreased in intensity by 14%, and an appropriate scaling was applied. Cell constants were refined from 2θ values of 44 reflections in the range $20-24^{\circ}$.

The structure was solved by the heavy-atom method and subjected to full-matrix anisotropic least-squares refinement on F. H atoms were included using a riding model. The solvent molecule was well-behaved. The final R was $0.042, w R=0.037 ; 177$ parameters, $S=1 \cdot 7$, weighting scheme $w^{-1}=\sigma^{2}(F)+0.00015 F^{2}$, $\max . \Delta / \sigma=0.014, \max .|\Delta \rho|=0.8 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974).
Final atomic coordinates are presented in Table 1, \dagger with derived bond lengths and angles in Table 2.

Discussion. The three separate species present in the structure all exhibit crystallographic symmetry. The $\mathrm{Au}(\mathrm{CN})_{4}^{-}$anions are associated with symmetry centres $\frac{1}{2}, \frac{1}{2}, 0$, but their actual symmetry is close to the ideal

[^1]Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	\boldsymbol{x}	\boldsymbol{y}	z	$U_{\text {eq }}$
Au	5000	5000	0	$44(1)$
$\mathrm{C}(1)$	$6811(7)$	$5118(5)$	$-470(3)$	$54(2)$
$\mathrm{N}(1)$	$7811(7)$	$5183(5)$	$-747(3)$	$78(3)$
$\mathrm{C}(2)$	$5563(8)$	$6189(5)$	$452(3)$	$52(2)$
$\mathrm{N}(2)$	$5882(7)$	$6842(5)$	$714(3)$	$72(3)$
As	$6268(1)$	$5833 \cdot 1(7)$	2500	$39(1)$
$\mathrm{C}(11)$	$6737(6)$	$5066(4)$	$3159(3)$	$41(2)$
$\mathrm{C}(12)$	$5742(7)$	$4369(5)$	$3329(3)$	$54(2)$
$\mathrm{C}(13)$	$6098(9)$	$3754(5)$	$3775(3)$	$67(3)$
$\mathrm{C}(14)$	$7404(9)$	$3820(5)$	$4044(3)$	$68(3)$
$\mathrm{C}(15)$	$8404(8)$	$4501(6)$	$3875(3)$	$67(3)$
$\mathrm{C}(16)$	$8071(7)$	$5129(5)$	$3427(3)$	$55(2)$
$\mathrm{C}(21)$	$4237(9)$	$6148(6)$	2500	$44(3)$
$\mathrm{C}(22)$	$3530(7)$	$6302(5)$	$3018(3)$	$60(2)$
$\mathrm{C}(23)$	$2120(8)$	$6619(6)$	$3010(3)$	$76(3)$
$\mathrm{C}(24)$	$1401(12)$	$6781(8)$	2500	$69(4)$
$\mathrm{C}(31)$	$7290(8)$	$7042(6)$	2500	$38(3)$
$\mathrm{C}(32)$	$7592(7)$	$7507(5)$	$1984(3)$	$58(2)$
$\mathrm{C}(33)$	$8216(8)$	$8424(5)$	$1992(3)$	$72(3)$
$\mathrm{C}(34)$	$8517(12)$	$8866(7)$	2500	$72(4)$
$\mathrm{C}(10)$	$8962(13)$	7500	5000	$90(5)$
Cl	$9998(3)$	$6729(2)$	$4590(1)$	$114(1)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Au}-\mathrm{C}(1) \quad 1$	1.999 (7)	$\mathrm{Au}-\mathrm{C}(2) \quad 2.01$	2.014 (7)
$\mathrm{C}(1)-\mathrm{N}(1) \quad 1$	1.127 (9)	$\mathrm{C}(2)-\mathrm{N}(2) \quad 1.1$	1.124 (9)
As-C(11) 1.	1.910 (6)	As-C(21) 1.9	1.919 (8)
As-C(31) 1.	1.912 (8)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.3$	1.385 (9)
$\mathrm{C}(11)-\mathrm{C}(16) \quad 1$.	1.378 (8)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.37$	1.377 (10)
$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$.	1.358 (11)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.37$. 372 (11)
$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$.	1.388 (10)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.38$	1.383 (7)
$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$.	1.369 (9)	C(23)-C(24) 1.37	1.374 (9)
$\mathrm{C}(31)-\mathrm{C}(32) \quad 1$.	1.386 (8)	$\mathrm{C}(32)-\mathrm{C}(33) \quad 1.38$	1.387 (10)
$\mathrm{C}(33)-\mathrm{C}(34) \quad 1$.	1.356 (9)	$\mathrm{C}(10)-\mathrm{Cl} 1.7$	1.717 (7)
$\mathrm{C}(1)-\mathrm{Au}-\mathrm{C}(2)$	90.2 (3)	$\mathrm{Au}-\mathrm{C}(2)-\mathrm{N}(2)$	178.7 (6)
$\mathrm{C}(2)-\mathrm{Au}-\mathrm{C}\left(1^{\prime}\right)$	89.8 (3)	C(11)-As-C(31)	111.8 (2)
$\mathrm{Au}-\mathrm{C}(1)-\mathrm{N}(1)$	178.2 (6)	C(11)-As-C(11)	106.5 (4)
C(11)-As-C(21)	$110 \cdot 2$ (2)	As-C(11)-C(16)	121.8 (5)
C(21)-As-C(31)	106.4 (3)	C(11)-C(12)-C(13)	118.9 (6)
As-C(11)-C(12)	117.6 (4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.5 (7)
C(12)-C(11)-C(16)) $120 \cdot 3$ (6)	C(11)-C(16)-C(15)	119.7 (6)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.1 (7)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}\left(22^{\text {II }}\right.$)) $120 \cdot 6$ (8)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$) 119.5 (7)	C(22)-C(23)-C(24)	121.3 (7)
As-C(21)-C(22)	119.6 (4)	As-C(31)-C(32)	120.1 (4)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$) 118.9 (6)	C(31)-C(32)-C(33)	119.5 (7)
C(23)-C(24)-C(23 ${ }^{\text {II }}$	(3) 118.9 (10)	C(33)-C(34)-C(331)) 120.8 (10)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}\left(32^{\text {II }}\right.$)	(1i) 119.5 (8)		
C(32)-C(33)-C(34)) 120.4 (7)		
$\mathrm{Cl}-\mathrm{C}(10)-\mathrm{Cl}^{\text {III }}$	112.5 (7)		

Symmetry operators: (i) $1-x, 1-y,-z$; (ii) $x, y, 0.5-z$; (iii) x, $1.5-y, 1-z$.

4/mmm. The $\mathrm{Ph}_{4} \mathrm{As}^{+}$cations possess crystallographic m symmetry (As on $x, y, \frac{1}{4}$) and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule crystallographic twofold symmetry (C on $x, \frac{3}{4}, \frac{1}{2}$). All three species are shown, together with the numbering scheme of the asymmetric unit, in Fig. 1. Fig. 2 shows the crystal packing; there are two distinct layers, one type at $z=\frac{1,3}{4}$ consisting of cations and the other, at $z=$ $0, \frac{1}{2}$, containing anions and solvent. Müller (1980) has discussed structural relationships of $\mathrm{Ph}_{4} E^{+}$salts,
including a hypothetical structure type in Pmab (an alternative setting of the current space group Pbcm), but the present structure does not correspond to this type, because the cations are not parallel to each other in the y direction and because the anions are associated with special positions 4(a) rather than 4(c).

As far as we are aware, only two other structural studies of $\mathrm{Au}(\mathrm{CN})_{4}^{-}$salts have been carried out. In $\mathrm{H}_{5} \mathrm{O}_{2}^{+} \cdot \mathrm{Au}(\mathrm{CN})_{4}^{-}$(Pennemann \& Ryan, 1972) the $\mathrm{Au}-\mathrm{C}$ bond lengths were $1.95,1.99$ (2) \AA, and in KAu$(\mathrm{CN})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (neutron diffraction; Bertinotti \& Bertinotti, 1970) 1.98 (1) \AA (av.). In the current structure the $\mathrm{Au}-\mathrm{C}$ bonds are slightly longer, 1.999 and 2.014 (7) A. A rigid-body libration correction for the $\mathrm{Au}(\mathrm{CN})_{4}^{-}$ion indicated bond-length corrections of $+0.009 \AA$ for $\mathrm{Au}-\mathrm{C}$ bonds, $+0.006 \AA$ for $\mathrm{C}(1)-\mathrm{N}(1)$ and $+0.005 \AA$ for $\mathrm{C}(2)-\mathrm{N}(2)$, but these corrections may not be completely reliable because of uncertainties in the anisotropic thermal parameters of the light atoms.

Several compounds containing the Au^{1} ion $\mathrm{Au}-$ $(\mathrm{CN})_{2}^{-}$have been structurally investigated, and the comparison of $\mathrm{Au}-\mathrm{C}$ bond lengths for the different oxidation states of the metal seems worthwhile. The precision of $\mathrm{Au}-\mathrm{C}$ bond lengths is inherently low, but some trends can be recognized. First, the $\mathrm{Au}-\mathrm{C}$ bond lengths in $\mathrm{Au}(\mathrm{CN})_{2}^{-}$seem to depend on the nature of the

Fig. 1. Perspective view of the title compound in the crystal, showing the numbering scheme of the asymmetric unit. For a discussion of the various types of crystallographically imposed symmetry, see text. Radii are arbitrary; cation H omitted for clarity.

Fig. 2. Stereo packing diagram of the title compound. Radii are arbitrary, cation H omitted for clarity.
counterion. For monatomic counterions, the bond length is longer than for polyatomic $\{2.00$ (3), 2.004 (19) Å in $\mathrm{Co}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{2}$, Zyontz, Abrahams \& Bernstein, 1981; 1.994 (11) \AA in $\mathrm{KCo}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3}$, Abrahams, Bernstein, Liminga \& Eisenmann, 1980; $1.993-1.998(22) \AA$ in $\mathrm{K}_{5}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{4}\left[\mathrm{Au}(\mathrm{CN})_{2} \mathrm{I}_{2}\right]$.$2 \mathrm{H}_{2} \mathrm{O}$, Bertinotti \& Bertinotti, 1972: cf. 1.939 (19) \AA in a $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~S}_{4} \mathrm{Se}_{2}^{0.5+}$ salt, Kikuchi, Ishikawa, Saito, Ikemoto \& Kobayashi, 1988; $1.88,1.94$ (2) \AA in a potassium crown ether salt, Krasnova et al., 1984\}. This could be attributable to the effects of $\mathrm{N} \cdots$..metal interactions. Secondly, for large counterions, the $\mathrm{Au}-\mathrm{C}$ bond is longer for $\mathrm{Au}(\mathrm{CN})_{4}^{-}$than for $\mathrm{Au}(\mathrm{CN})_{2}^{-}$; this may be a consequence of the better 'soft-soft' interactions for Au^{1}. These conclusions must be regarded as tentative, but are supported by observations of AuCl_{4}^{-} and $\mathrm{AuCl}^{-}{ }^{-}$salts, with more ionic bonding and less sensitivity of the $\mathrm{Au}-X$ bond length to oxidation state; a large number of AuCl_{4}^{-}salts have $\mathrm{Au}-\mathrm{Cl}$ bond lengths near the typical value of ca $2 \cdot 27 \AA$ (Jones, 1981), and various AuCl_{2}^{-}salts show similar values, e.g. 2.257 (4) \AA for the $\mathrm{Bu}_{4} \mathrm{~N}^{+}$salt (Braunstein, Müller \& Bögge, 1986), 2.269-2.286 (6) \AA for the $\mathrm{Et}_{4} \mathrm{~N}^{+}$salt (Helgesson \& Jagner, 1987), and 2.260(14), 2.293 (15) \AA for the $\mathrm{py}_{2} \mathrm{Au}^{+}$salt (Adams, 1980).

Future, more extensive measurements may enable us to distinguish the effects of other factors such as hybridization and electrostatic interactions.

We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for financial
support, and Degussa AG for a generous gift of gold metal.

References

Abrahams, S. C., Bernstein, J. L., Liminga, R. \& Eisenmann, E. T. (1980). J. Chem. Phys. 73, 4585-4590.

Adams, H.-N. (1980). PhD Dissertation, Univ. of Tübingen, Federal Republic of Germany.
Bertinotti, C. \& Bertinotti, A. (1970). Acta Cryst. B26, 422-428.
Bertinotti, C. \& Bertinotti, A. (1972). Acta Cryst. B28, 2635-2639.
Braunstein, P., Müller, A. \& Bögge, H. (1986). Inorg. Chem. 25, 2104-2106.
Clegg, W. (1981). Acta Cryst. A37, 22-28.
Helgesson, G. \& Jagner, S. (1987). Acta Chem. Scand. Ser. A, 41, 556-561.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Jones, P. G. (1976). PhD Thesis, Univ. of Cambridge, England.
Jones, P. G. (1981). Gold Bull. 14, 159-166.
Jones, P. G. \& Thöne, C. (1987). Acta Cryst. C43, 1915-1917.
Kikuchi, K., Ishikawa, Y., Saito, K., Ikemoto, I. \& Kobayashi, K. (1988). Acta Cryst. C44, 466-468.

Krasnova, N. F., Simonov, Y. A., Bel'ski, V. K., Abashkin, V. M., Yashiin, V. V., Malinovskil, T. I. \& Larskorin, B. N. (1984). Dokl. Akad. Nauk SSSR, 276, 607-611.

Müller, U. (1980). Acta Cryst. B36, 1075-1081.
Pennemann, R. A. \& Ryan, R. R. (1972). Acta Cryst. B28, 1629-1632.
Schmidtke, H. H. \& Garthoff, R. (1967). Helv. Chim. Acta, 50, 1631-1635.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Zyontz, L. E., Abrahams, S. C. \& Bernstein, J. L. (1981). Acta Cryst. A37, C-154.

Structure of [3,3'-(2,2-Dimethylpropylene)diiminodipropionamide]copper(II) Perchlorate Monohydrate

By Tian-Huey Lu, Hung-Ying Kao, Ching-Hohn Len and Chung-Sun Chung National Tsing-Hua University, Hsinchu, Taiwan 30043

(Received 29 March 1988; accepted 11 July 1988)

Abstract

Cu}\left(\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=524 \cdot 8\), monoclinic, $P 2_{1} / c, a=16.757$ (4), $b=11.290$ (3), c $=11.531$ (3) $\AA, \quad \beta=108.28(2)^{\circ}, \quad U=2071.4$ (9) \AA^{3}, $Z=4, D_{x}=1.683 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мо $K \alpha)=0.7093 \AA, \mu$ $=1.37 \mathrm{~mm}^{-1}, \quad F(000)=1084, \quad T=295(3) \mathrm{K}, \quad R=$ $0.035, w R=0.026$ for 3128 observed reflections. The Cu atom has coordination number six, two O (carbamoyl), two $\mathrm{N}($ diamine $)$ and two $\mathrm{O}\left(\mathrm{ClO}_{4}\right)$, forming a $(4+2)$-type complex. The central six-membered ring formed between the ligand and the Cu atom is in the

0108-2701/89/010013-04\$03.00
chair conformation whereas the other two rings are twisted chairs. The solvate water molecules are hydrogen bonded to molecules of the complex, holding them together. The H atoms attached to the amino groups, NH, are on the same side of the least-squares plane of the Cu-coordinated atoms.

Introduction. Previous papers (Liu \& Chung, 1985, 1986; Chao \& Chung, 1987, 1988; Lee, Lu, Liu, Chung \& Lee, 1984; Lee, Hong, Liu, Chung \& Lee, (c) 1989 International Union of Crystallography

[^0]: *Current address: Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig, Federal Republic of Germany.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51307 (12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5. Abbey Square, Chester CH1 2HU, England.

